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Abstract. An event generator based on the CHIPS model is implemented in the GEANT4 simulation
toolkit. Nuclear fragment production in the process of pion capture on nuclei is used to tune the parameters
of the CHIPS model describing clusterization of nucleons in nuclei. The spectra of nucleons and nuclear
fragments in pion capture and in photonuclear reactions at 60 MeV are compared with experimental data.

PACS. 02.70.Lq Monte Carlo and statistical methods – 12.38.Mh Quark gluon plasma – 24.10.Lx Monte
Carlo simulations (including hadron and parton cascades and string breaking models) in nuclear reactions:
general – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

The present publication is the second in a series started
with [1], describing the CHIPS model of hadronic fragmen-
tation which we propose to use in the GEANT4 simulation
of hadronic processes in the intermediate energy range of
nuclear excitations from about 10 MeV to approximately
10 GeV. The main subject of this publication is to con-
sider hadronic fragmentation processes in nuclear matter,
where quark exchange reactions are possible between the
Quasmon (a droplet of asymptotically free quark-partons,
see ref. [1]) and neighboring nucleons or nuclear clusters.

The CHIPS computer code is a quark level three-
dimensional event generator for the fragmentation of
hadronic systems into hadrons. An important feature of
the model is a homogeneous distribution of asymptotically
free quark-partons over the invariant phase space, applied
to the fragmentation of different types of excited hadronic
systems including nucleon excitations, hadronic systems
produced in e+e− interactions, high-energy nuclear ex-
citations, etc.. Exclusive event generation which models
multiple hadron production conserving energy, momen-
tum, and charge generally results in a good description
of particle multiplicities and spectra in multihadron frag-
mentation processes. All this makes it possible to use the
CHIPS event generator in exclusive modeling of hadron
cascades in materials.

When compared with the first “in vacuum” version of
the model, described in [1], modeling of hadronic fragmen-
tation in nuclear matter is more complicated, because of
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the much greater number of possible secondary fragments,
but the hadronization process itself is simpler in a certain
way. In vacuum, the quark-fusion mechanism requires a
quark-parton partner from the external (as in JETSET
[2]) or internal (Quasmon itself [1]) quark-antiquark sea.
In nuclear matter, there is a second possibility: quark ex-
change with the neighboring hadronic system, a nucleon or
nuclear multinucleon cluster. Thus in nuclear matter the
spectra of secondary hadrons and nuclear fragments may
be considered as a reflection of the quark-parton energy
spectrum in a Quasmon. In the case of inclusive spectra
that are steeply decreasing with energy, and correspond-
ingly steeply decreasing spectra of the quark-partons in
a Quasmon, only those secondary hadrons which get the
maximum energy from the primary quark-parton with en-
ergy k are contributing to the inclusive spectra. This ex-
treme situation requires the exchanged quark-parton with
energy q, coming back to the Quasmon from the cluster, to
move in the opposite direction with respect to the primary
quark-parton. As a result the hadronization quark ex-
change process becomes one-dimensional along the direc-
tion of k. If a neighboring nucleon or nuclear cluster with
bound mass µ̃ absorbs the primary quark-parton and radi-
ates the exchanged quark-parton in the opposite direction,
then the energy of the outgoing fragment is E = µ̃+k−q,
and the momentum is p = k + q. Both energy and mo-
mentum of the outgoing nuclear fragment are known (as
well as the mass µ̃ of the nuclear fragment in nuclear mat-
ter), so the momentum of the primary quark-parton can
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be reconstructed using the approximate relation

k =
p+ E −B ·mN

2
, (1)

where B is the baryon number of the outgoing fragment
(µ̃ ≈ B ·mN, and mN is the nucleon mass). In [3] it was
shown that the invariant inclusive spectra of pions, pro-
tons, deuterons, and tritons in proton-nucleus reactions
at 400 GeV [4] have not only the same exponential slope
but almost coincide when they are plotted as a function
of k = p+Ekin

2 . Using data at 10 GeV [5], it was shown
that the parameter k defined by equation (1) is appropri-
ate also for the description of secondary antiprotons pro-
duced in high-energy nuclear reactions. This means that
the extreme assumption of one-dimensional hadronization
is a good approximation, not only for the quark exchange
mechanism but for the quark fusion mechanism as well. In
the one-dimensional case, assuming that q is the momen-
tum of the second quark fusing with the primary quark-
parton with energy k, the total energy of the outgoing
hadron is E = q + k and the momentum is p = k − q.
In the one-dimensional case the secondary quark-parton
must move in the opposite direction with respect to the
primary quark-parton; otherwise the mass of the outgoing
hadron would be zero. So we get for mesons k = p+E

2 ,
in accordance with eq. (1). In the case of antiproton ra-
diation, the baryon number of the Quasmon is increased
by one, and the primary antiquark-parton will spend its
energy to build up the mass of the antiproton by picking
up an anti-diquark. Thus, the energy conservation law for
antiproton radiation looks like E+mN = q+ k and hence
k = p+E+mN

2 , which is again in accordance with eq. (1).
This one-dimensional quark exchange mechanism was

proposed in 1984 [3]. Even in its approximate form it was
useful in the analysis of inclusive spectra of hadrons and
nuclear fragments in hadron-nuclear reactions at high en-
ergies. Later the same approach was used in the analysis of
nuclear fragmentation in electro-nuclear reactions [6]. Also
in 1984 the quark-exchange mechanism developed in the
framework of the non-relativistic quark model was found
to be important for the explanation of the short distance
features of NN interactions [7]. Later it was successfully
applied to the K−p interactions [8]. The idea of the quark
exchange mechanism between nucleons was useful even
for the explanation of the EMC effect [9]. For the non-
relativistic quark model, the quark exchange technique
was developed as an alternative to the Feynman diagram
technique at short distances [10].

The CHIPS event generator models quark exchange
processes, taking into account kinematical and combina-
torial factors for asymptotically free quark-partons. The
naive picture of the quark-exchange mechanism is tunnel-
ing of quark-partons from the asymptotically free region
of one hadron to the asymptotically free region of another
hadron. To conserve color, another quark-parton from the
neighboring hadron must replace the first quark-parton
in the Quasmon. It makes the tunneling mutual, and the
process has to be quark exchange.

The experimental data available on multihadron pro-
duction at high energies show regularities in the secondary

Q(M) CRQ(MN-1) RQ(Mmin)

PC( µ )˜ CF(µc ) F(µ )

k q

Fig. 1. Diagram of quark exchange mechanism.

particle spectra that can be related to the simple kinemat-
ical, combinatorial, and phase space rules of such quark
exchange and fusion mechanisms. The CHIPS model com-
bines these mechanisms consistently in the form of a com-
putational algorithm and an event generator.

2 Algorithm of quark exchange calculation.

Figure 1 shows the quark exchange diagram which helps
to keep track of the kinematics of the quark-exchange pro-
cess. It was shown in ref. [1] that a Quasmon (Q in fig. 1)
is kinematically determined by a few asymptotically free
quark-partons homogeneously distributed over the invari-
ant phase space. The Quasmon mass M is related to the
number of quark-partons N through

〈M2〉 = 4N(N − 1) · T 2, (2)

where T is the temperature of the system.
The spectrum of quark partons can be calculated as

dW
k∗dk∗

∝
(

1 − 2k∗

M

)N−3
, (3)

where k∗ is the energy of the primary quark-parton in the
center-of-mass system (CMS) of the Quasmon. After the
primary quark-parton is randomized and the neighboring
cluster (parent cluster – PC in fig. 1) with the bound mass
µ̃ is selected, the quark exchange process starts. To follow
the process kinematically one should imagine a colored
compound system consisting of the bound parent cluster
and the primary quark with energy k in the laboratory
system (LS)

k = k∗ · EN + pN · cos(θk)
MN

, (4)

where MN, EN and pN are mass, energy, and momentum
of the Quasmon in the LS. The mass of the compound
system (CF in fig. 1) is µc =

√
(µ̃+ k)2, where µ̃ and

k are corresponding four-vectors. This colored compound
system decays into a free outgoing nuclear fragment with
mass µ (F in fig. 1) and the recoiling quark with energy q
(in the CMS of µ̃, which coincides with LC in the present
version of the model, as no internal motion of clusters is
considered). At this point one should recall that a colored
residual Quasmon with mass MN−1 (CRQ in fig. 1) is left
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after radiation of k. The last action is to fuse the CRQ
and the recoil quark q. The resulting residual quasmon
(RQ in fig. 1) should have its minimum mass higher than
Mmin, which is determined by the minimum mass of a
hadron (or Chipolino, double hadron as defined in ref. [1])
with the same quark content. All quark-antiquark pairs
with the same flavor should be canceled in the minimum
mass calculations. In the CMS of µc this restriction can
be written as

2q · (E − p · cos θqCQ) +M2
N−1 > M2

min, (5)

where E is the energy and p is the momentum of the
colored residual Quasmon with mass MN−1 in CMS of
µc. Then the restriction for cos θqCQ is

cos θqCQ <
2qE −M2

min +M2
N−1

2qp
. (6)

It implies that

q >
M2

N−1 −M2
min

2 · (E + p)
. (7)

A second restriction comes from the nuclear Coulomb
barrier for charged particles. We calculate the Coulomb
barrier in a simple form:

ECB =
ZF · ZR
A

1
3
F +A

1
3
R

(MeV), (8)

where ZF and AF are charge and atomic weight of the
fragment, and ZR and AR are charge and atomic weight
of the residual nucleus. The obvious restriction is

q < k + µ̃− µ− ECB. (9)

The restrictions (7) and (9) are complementary to the
restrictions from the quark exchange mechanism which
should be calculated. The spectrum of recoiling quarks is
similar to the k∗ spectrum in Quasmon (3):

dW
q dq d cos θ

∝
(

1 − 2q
µ̃

)n−3
, (10)

where n is the number of quark-partons in the nuclear
cluster. We consider it to be equal to 3AC, where AC is the
atomic weight of the parent cluster. Tunneling of quarks
from one nucleon to another makes the phase space com-
mon for all quark-partons of the cluster.

An additional equation follows from the mass shell con-
dition for the outgoing fragment,

µ2 = µ̃2 + 2µ̃ · k − 2µ̃ · q − 2k · q · (1 − cos θkq), (11)

where θkq is the angle between quark-partons in LS. From
this equation q can be calculated as

q =
µ̃ · (k −∆)

µ̃+ k · (1 − cos θkq)
, (12)

where ∆ is the covariant binding energy of the cluster
∆ = µ2−µ̃2

2µ̃ . The quark exchange probability integral can
be written in the form

P (k, µ̃, µ) =∫
δ
[
µ2 − µ̃2 − 2µ̃ · k + 2µ̃ · q + 2k · q · (1 − cos θkq)

]
×

(
1 − 2q

µ̃

)n−3
qdq·d cos θkq. (13)

Using the δ-function to make the integration over q one
gets

P (k, µ̃, µ) =
∫ (

1 − 2(k −∆)
µ̃+ k(1 − cos θkq)

)n−3

× µ̃(k −∆)
2[µ̃+ k(1 − cos θkq)]2

dcos θkq (14)

or

P (k, µ̃, µ) =
∫ (

1 − 2(k −∆)
µ̃+ k(1 − cos θkq)

)n−3

×
(

µ̃(k −∆)
µ̃+ k(1 − cos θkq)

)2

× d
(
µ̃+ k(1 − cos θkq)

µ̃(k −∆)

)
. (15)

The result of the integration is

P (k, µ̃, µ) =
µ̃

4k(n− 2)

×
[(

1 − 2(k −∆)
µ̃+ 2k

)n−2

high

−
(

1 − 2(k −∆)
µ̃

)n−2

low

]
. (16)

For randomization it is convenient to make z a random
parameter

z = 1 − 2(k −∆)
µ̃+ k(1 − cos θkq)

= 1 − 2q
µ̃
. (17)

From (16) one can find the high and the low limits of the
randomization. The first limit is a limit for k: k > ∆. It
is similar to the restriction for Quasmon fragmentation
in vacuum: k∗ > µ2

2M . The second limit is k = µ2

2µ̃ , when
the low limit of randomization becomes equal to zero. If
k < µ2

2µ̃ , then −1 < cos θkq < 1 and zlow = 1 − 2(k−∆)
µ̃ . If

k > µ2

2µ̃ , then the range of cos θkq is −1 < cos θkq <
µ2

kµ̃ − 1
and zlow = 0. This value of zlow should be corrected using
the Coulomb barrier restriction (9), and the value of zhigh
should be corrected using the minimum residual Quasmon
restriction (7). In the case of a Quasmon with momentum
much less than k it is possible to impose tighter restric-
tions than (7) because the direction of motion of the CRQ
is opposite to k. So cos θqCQ = − cos θkq , and from (12)
one can find that

cos θqCQ = 1 − µ̃ · (k −∆− q)
k · q . (18)
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So in this case eq. (7) can be replaced by the more strin-
gent one:

q >
M2

N−1 −M2
min + 2p·µ̃

k (k −∆)

2 · (E + p+ p·µ̃
k )

. (19)

The integrated kinematical quark exchange probability
(in the range from zlow to zhigh) is

µ̃

4k(n− 2)
· zn−2, (20)

and the total kinematical probability of hadronization of
the quark-parton with energy k into a nuclear fragment
with mass µ is

µ̃

4k(n− 2)
·
(
zn−2
high − zn−2

low

)
. (21)

This can be compared with the vacuum probability of the
quark fusion mechanism [1]:

M − 2k
4k(N − 3)

zN−3
max . (22)

The similarity is very important, as the absolute probabil-
ities define the competition between vacuum and nuclear
channels.

Equations (20) and (21) can be used for randomization
of z:

z = zlow + n−2
√
R · (zhigh − zlow), (23)

where R is a random number, uniformly distributed in the
interval (0,1).

Equation (21) can be used to control the competition
between different nuclear fragments and hadrons in the
hadronization process, but in contrast to the case of “in
vacuum” hadronization it is not enough to take into ac-
count only quark combinatorics of the Quasmon and the
outgoing hadron. In the case of hadronization in nuclear
matter, different parent bound clusters should be taken
into account as well. For example, tritium can be radiated
as a result of quark exchange with a bound tritium cluster
or as a result of quark exchange with a bound 3He cluster.

To calculate the yield of fragments it is necessary to
calculate the probability to find a cluster with certain pro-
ton and neutron content in a nucleus. One could consider
any particular probability as an independent parameter,
but in such a case the process of tuning the model would
be difficult. We proposed the following scenario of cluster-
ization. A gas of quasi-free nucleons is close to the phase
transition to a liquid phase bound by strong quark ex-
change forces. Precursors of the liquid phase are nuclear
clusters, which may be considered as “drops” of the liquid
phase within the nucleus. Any cluster can meet another
nucleon and absorb it (making it bigger), or it can re-
lease one of the nucleons (making it smaller). The first
parameter ε1 is the percentage of quasi-free nucleons not
involved in the clusterization process. The rest of the nu-
cleons (1 − ε1) clusterize. We assume that since on the

periphery of the nucleus the density is lower, one can
consider only dibaryon clusters, and neglect triple-baryon
clusters. Still we denote the number of nucleons cluster-
ized in dibaryons on the periphery by the parameter ε2.
In the dense part of the nucleus, strong quark exchange
forces make clusters out of quasi-free nucleons with high
probability. To characterize the distribution of clusters the
parameter ω of clusterization probability was used.

If the number of nucleons involved in clusterization is
a = (1− ε1− ε2) ·A, then the probability to find a cluster
consisting of ν nucleons is defined by the distribution

Pν ∝ Ca
ν · ων−1, (24)

where Ca
ν is the corresponding binomial coefficient. The

coefficient of proportionality can be found from the equa-
tion

a = b ·
a∑

ν=1

ν · Ca
ν · ων−1 = b · a · (1 + ω)a−1. (25)

Thus, the number of clusters consisting of ν nucleons is

Pν =
Ca

ν · ων−1

(1 + ω)a−1 . (26)

For clusters with an even number of nucleons we used only
isotopically symmetric configurations (ν = 2n, n protons
and n neutrons) and for odd clusters (ν = 2n+1) we used
only two configurations: n neutrons with n+1 protons and
n+ 1 neutrons with n protons. This restriction, which we
call “isotopic focusing”, can be considered as an empirical
rule of the CHIPS model which helps to describe data. It
is applied in the case of nuclear clusterization (isotopically
symmetric clusters) and in the case of hadronization in nu-
clear matter. In the hadronization process the Quasmon
is shifted from isotopic symmetric state (e.g., by captur-
ing a negative pion) and transfers excessive charge to the
outgoing nuclear cluster. This tendency is symmetric with
respect to the Quasmon and the parent cluster.

The temperature parameter used to calculate the num-
ber of quark-partons in a Quasmon (see eq. 2) was chosen
to be T = 180 MeV, which is the same as in ref. [1].

The CHIPS model is mostly a model of fragmentation
conserving energy, momentum, and charge. But to com-
pare it with experimental data one needs to model also
the first interaction of the projectile with the nucleus. For
proton-antiproton annihilation this was easy, as we as-
sumed that in the interaction at rest, a proton and an
antiproton always create a Quasmon. In the case of pion
capture the pion can be captured by different clusters. We
assumed that the probability of capture is proportional to
the number of nucleons in a cluster. After the capture the
Quasmon is formed, and the CHIPS generator produces
fragments consecutively and recursively, choosing at each
step the quark-parton four-momentum k, the type of par-
ent and outgoing fragment, and the four-momentum of the
exchange quark-parton q, to produce a final state hadron
and the new Quasmon with less energy.

In the CHIPS model we consider this process as a
chaotic process with large number of degrees of freedom
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and do not take into account any final-state interactions
of outgoing hadrons. Nevertheless, when the excitation
energy dissipates, and in some step the Quasmon mass
drops below mass shell, the quark-parton mechanism of
hadronization fails. To model the event exclusively, it be-
comes necessary to continue fragmentation at the hadron
level. Such fragmentation process is known as nuclear
evaporation. It is modeled using the non-relativistic phase
space approach. In the non-relativistic case the phase
space of nucleons can be integrated as well as in the ultra-
relativistic case of quark-partons.

The general formula for the non-relativistic phase
space can be found starting with the phase space for two
particles Φ̃2. It is proportional to the CMS momentum:

Φ̃2(W2) ∝
√
W2, (27)

where W2 is a total kinetic energy of the two non-
relativistic particles. If the phase space integral is known
for n−1 hadrons then it is possible to calculate the phase
space integral for n hadrons:

Φ̃n(Wn) =
∫
Φ̃n−1(Wn−1) · δ(Wn −Wn−1 − Ekin)

×
√
EkindEkindWn−1. (28)

Using (27) and (28), one can find that

Φ̃n(Wn) ∝W
3
2 n− 5

2
n (29)

and the spectrum of hadrons, defined by the phase space
of residual n− 1 nucleons, can be written as

dN√
EkindEkin

∝
(

1 − Ekin

Wn

) 3
2 n−4

. (30)

This spectrum can be randomized. The only problem is
from which level one should measure the thermal kinetic
energy when most nucleons in nuclei are filling nuclear
levels with zero temperature. To model the evaporation
process we used this unknown level as a parameter U of
the evaporation process. Comparison with experimental
data gives U = 1.7 MeV. Thus, the total kinetic energy of
A nucleons is

WA = U ·A+ Eex, (31)

where Eex is the excitation energy of the nucleus.
To be radiated, the nucleon should overcome the

threshold

Uthresh = U + Ubind + ECB, (32)

where Ubind is a separation energy of the nucleon, and ECB

is the Coulomb barrier energy which is non-zero only for
positive particles and can be calculated using formula (8).

3 Comparison with data

Among several experimental investigations of nuclear pion
capture at rest we have selected four published results

which constitute, in our opinion, a representative data set
covering a wide range of target nuclei, types of produced
hadrons and nuclei fragments, and their energy range. In
the first publication [11] the spectra of charged fragments
(protons, deuterons, tritium, 3He, 4He) in pion capture
were measured on 17 nuclei within one experimental setup.
To verify the spectra we compared them for a carbon tar-
get with detailed measurements of the spectra of charged
fragments given in ref. [12]. In addition, we took 6Li spec-
tra for a carbon target from the same paper.

The neutron spectra were added from ref. [13] and
ref. [14]. We present data and Monte Carlo distributions
as the invariant phase space function f = dσ

pdE depending
on the variable k = p+Ekin

2 as defined in eq. (1).
Spectra on 9Be, 12C, 28Si (27Al for secondary neu-

trons), 59Co (64Cu for secondary neutrons), and 181Ta are
shown in figs. 2 through 6. The data are described well,
including the total energy spent in the reaction to yield
the particular type of fragments.

The evaporation process for nucleons is described well,
too. It is exponential in k, and looks especially impressive
for Si/Al and Co/Cu data, where the Coulomb barrier is
low, and one can see proton evaporation as a continuation
of the evaporation spectra from secondary neutrons. This
way the exponential behavior of the evaporation process
can be followed over 3 orders of magnitude. Clearly seen
is the transition region at k ≈ 90 MeV (kinetic energy
15–20 MeV) between the quark level hadronization pro-
cess and the hadron level evaporation process. For light
target nuclei the evaporation process becomes much less
prominent.

The 6Li spectrum on a carbon target exhibits an in-
teresting regularity when plotted as a function of k: it
practically coincides with the spectrum of 4He fragments,
and shows exponential behavior in a wide range of k, cor-
responding to a few orders of magnitude in the invariant
cross-section. To keep the figure readable, we did not plot
the 6Li spectrum generated by CHIPS. It coincides with
the 4He spectrum at k > 200 MeV, and underestimates
lithium emission at lower energies, similarly to the 3He
and tritium data.

Between the region where hadron level processes dom-
inate and the kinematic limit all hadronic spectra slopes
become close when plotted as a function of k. In addition
to this general behavior there is an effect of strong proton-
neutron splitting. For protons and neutrons it reaches al-
most an order of magnitude. To model such splitting in
the CHIPS generator, the mechanism of “isotopic focus-
ing” was used, which locally transfers the negative charge
from the pion to the first radiated nuclear fragment.

Thus, the model qualitatively describes all typical fea-
tures of the pion capture process. The question is what
can be extracted from the experimental data with this
tool. The clusterization parameters are listed in table 1.
No formal fitting procedure has been performed. A bal-
anced qualitative agreement with all data was used to
tune the parameters. The difference between the ε2

ε1
ra-

tio and the parameter ω (which is the same for all nuclei)
is an indication that there is a phase transition between
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Pion capture on 9Be nucleus

neutrons
〈Ekin 〉e/m = 100.8 / 81.2 MeV

protons
〈Ekin〉e/m =  6.3 / 5.8 MeV

dN
/p

dE
 (

M
eV

-2
 C

ap
tu

re
-1

) 
   

   
   

   
   

   
 deuterons

〈Ekin 〉e/m =  5.9 / 5.3 MeV

Helium-3
〈Ekin 〉e/m =  0.4 / 1.3 MeV

tritium
〈Ekin 〉e/m =  4.4 / 2.8 MeV

k = (p+Ekin )/2 (MeV)                                         

Helium-4
〈Ekin 〉e/m =  1.2 / 5.9 MeV

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0 200 400 0 200 400

Fig. 2. Comparison of the CHIPS model results with experimental data on proton, neutron, and nuclear fragment production
in the capture of negative pions on 9Be. Proton [11] and neutron [13] experimental spectra are shown in the upper left panel by
open circles and open squares, respectively. The model calculations are shown by the two corresponding solid lines. The same
arrangement is used to present 3He [11] and tritium [11] spectra in the lower left panel. Deuterium [11] and 4He [11] spectra
are shown in the right panels of the figure by open squares and lines (CHIPS model). The average kinetic energy carried away
by each nuclear fragment is shown in the panels by the two numbers: first is the average calculated using the experimental data
shown; second is the model result.

Table 1. Clusterization parameters

9Be 12C 28Si 59Co 181Ta

ε1 0.45 0.40 0.35 0.33 0.33
ε2 0.15 0.15 0.05 0.03 0.02
ω 5.00 5.00 5.00 5.00 5.00

the gas phase and the liquid phase of the nucleus. The
large value of the parameter ω, determining the average
size of a nuclear cluster, is critical in describing the model
spectra at large k, where the fragment spectra approach
the kinematical limits.

Using the same parameters of clusterization we com-
pared the data [15] on γ absorption on Al and Ca nuclei
(fig. 7) with the CHIPS results. One can see that the spec-
tra of secondary protons and deuterons are qualitatively
described by the CHIPS model.

GEANT4 implementation

As compared with the previous “in vacuum” version, the
developed version of the CHIPS model is more organized.

For nuclear masses it uses the standard GEANT4 tools.
For nuclear reactions at low energies, where the deposited
energy is comparable with the binding energy of nucleons
and nuclear clusters, the knowledge of the masses of the
ground-state nuclei becomes very important. In addition,
the Q-world of the CHIPS model is created at the first
call of the G4Quasmon class. All pointers to the Q-world
are kept as static parameters of the class, so that any new
C++ instance of the class can immediately connect itself
to the Q-world resident in memory. A special destructive
member function of the G4Quasmon class can destroy the
Q-world, cleaning up a space in the C++ heap. This proce-
dure releases memory but requires rebuilding the Q-world
when a new C++ instance of the G4Quasmon class is cre-
ated.

The Q-world includes C++ objects, namely the in-
stances of particles and nuclear fragments. Each particle
has a vector of decay channels, and any decay channel in-
cludes a branching ratio and a vector of secondary parti-
cles. At this time the Q-world includes 71 particles and
53 anti particles. Nuclear fragments of the Q-world
are covering n/p-symmetric nuclei and hypernuclei with
strangeness less than 3. For A = 6 for example there are
6He, 6Li, 6Be, 5HeΛ, 5LiΛ, 4HΛΛ, 4HeΛΛ, and 4LiΛΛ. All
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Pion capture on 12C nucleus
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Fig. 3. Same as in fig. 2, for pion capture on 12C. The experimental neutron spectrum is taken from [14]. In addition, the
detailed data on charged particle production, including the 6Li spectrum, taken from ref. [12], are superimposed on the plots
as a series of dots.

Pion capture on 28Si nucleus
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Fig. 4. Same as in fig. 2, for pion capture on 28Si nucleus. The experimental neutron spectrum is taken from [14], for the
reaction on 27Al.
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Pion capture on 59Co nucleus
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Fig. 5. Same as in fig. 2, for pion capture on 59Co. The experimental neutron spectrum is taken from [14], for the reaction on
64Cu.

Pion capture on 181 Ta nucleus
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Fig. 6. Same as in fig. 2, for pion capture on 181Ta. The experimental neutron spectrum is taken from [14].
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A(γ,p) and A(γ,d) spectral cross section at Eγ =59-65 MeV
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Fig. 7. Comparison of CHIPS model with experimental data [15] on proton and deuteron production at 90◦ in photonuclear
reactions on 27Al and 40Ca at 59–65 MeV. Open circles and solid squares represent the experimental proton and deuteron
spectra, respectively. Solid and dashed lines show the results of the corresponding CHIPS model calculation. Statistical errors
in the CHIPS results are not shown and can be judged by the point-to-point variations in the lines. The comparison is absolute,
using the values of total photonuclear cross-section 3.6 mb for Al and 5.4 mb for Ca, as given in ref. [16].

particles of the Q-world have a Q-Code and a PDG-Code.
The Q-Code enumerates the particles and fragments. It
works as a sequential ID for particle data bases, and the
PDG-code is the code of the Particle Data Group. To
implement fragments in the Q-world any fragment has a
PDG-Code in a form: 9SZZZNNN . The PDG-Code of a
nucleus in the Q-world consists of 8 digits. The first digit,
following the PDG convention, is 9; the second digit is the
number of Λ particles in the nucleus. It is restricted to 9
Λ particles in a nucleus or nuclear fragment. Digits from
3 to 5 is the number of protons and digits from 6 to 8
is the number of neutrons. Three particles, p, n, and Λ,
are represented in the Q-world twice: once as hadrons cre-
ated in vacuum as a result of quark fusion hadronization
and a second time as nuclear fragments created in the nu-
clear medium as a result of quark exchange hadronization.
So for these baryons it is possible to find out from their
PDG-codes how they were created.

In addition, at any step of the fragmentation a vector
of candidates for the outgoing fragment (hadron or nuclear
fragment) is created. If the candidate is a nuclear fragment
then it has a vector of possible parent clusters from the
nuclear environment. For each candidate the probability of
hadronization is calculated, and for nuclear fragments sub-
probabilities for different parent clusters are calculated as
well.

All unstable (with respect to strong interaction) par-
ticles, including p-, n-, and α-unstable nuclei, decay in
the sequence. The evaporation process is organized as a
sequential decay of an excited nucleus. The information

about the parent nucleus can be found in the vector of
output hadrons. A user is able to decide what to do with
it. For example, in the case of relatively long lifetime α-
unstable nuclei, like 8Be, in certain circumstances it might
be necessary to use explicitly the 8Be parent nucleus in a
hadronic shower to model the energy loss in an event cor-
rectly.

4 Conclusion

The CHIPS model covers a wide spectrum of hadronic
reactions with a large number of degrees of freedom. In
the case of nuclear reactions the CHIPS generator helps
to understand phenomena such as an order of magnitude
splitting of neutron and proton spectra, high yield of en-
ergetic nuclear fragments, and emission of nucleons which
kinematically can be produced only if seven or more nu-
cleons are involved in the reaction.

The CHIPS generator allows to extract collective pa-
rameters of a nucleus such as clusterization. The qualita-
tive conclusion based on the fit to the experimental data
is that the main fraction of nucleons is clusterized, at least
in heavy nuclei. The nuclear clusters can be considered as
drops of a liquid nuclear phase. The quark exchange makes
the phase space of quark-partons of each cluster common,
stretching kinematic limits for particle production.

The hypothetical quark exchange process is important
not only for the nuclear clusterization, but for the nuclear
hadronization process, too. The quark exchange between
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the excited cluster (Quasmon) and a neighboring nuclear
cluster, even at low excitation level, operates with quark-
partons at energies comparable with the nucleon mass.
As a result it easily reaches the kinematic limits of the
reaction, revealing the multinucleon nature of the process.

Up to now the most underdeveloped part of the model
has been the initial interaction between projectile and tar-
get. That is why we started with proton-antiproton anni-
hilation and pion capture on nuclei at rest, which do not
involve any interaction cross-section. The further devel-
opment of the model will require a better understand-
ing of the mechanism of the first interaction. However,
we believe that even the basic model will be useful in
understanding the nature of multihadron fragmentation,
and because of its features, is a suitable candidate for the
hadron production and hadron cascade parts of the newly
developed event generation and detector simulation Monte
Carlo computer codes.

The work was supported by the U.S. Department of Energy
under contract number DE-AC05-84ER4015.
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